Bioactivation of Trimethoprim to Protein-Reactive Metabolites in Human Liver Microsomes.

نویسندگان

  • Jennifer L Goldman
  • Yakov M Koen
  • Steven A Rogers
  • Kelin Li
  • James S Leeder
  • Robert P Hanzlik
چکیده

The formation of drug-protein adducts via metabolic activation and covalent binding may stimulate an immune response or may result in direct cell toxicity. Protein covalent binding is a potentially pivotal step in the development of idiosyncratic adverse drug reactions (IADRs). Trimethoprim (TMP)-sulfamethoxazole (SMX) is a combination antibiotic that commonly causes IADRs. Recent data suggest that the contribution of the TMP component of TMP-SMX to IADRs may be underappreciated. We previously demonstrated that TMP is bioactivated to chemically reactive intermediates that can be trapped in vitro by N-acetyl cysteine (NAC), and we have detected TMP-NAC adducts (i.e., mercapturic acids) in the urine of patients taking TMP-SMX. However, the occurrence and extent of TMP covalent binding to proteins was unknown. To determine the ability of TMP to form protein adducts, we incubated [(14)C]TMP with human liver microsomes in the presence and absence of NADPH. We observed protein covalent binding that was NADPH dependent and increased with incubation time and concentration of both protein and TMP. The estimated covalent binding was 0.8 nmol Eq TMP/mg protein, which is comparable to the level of covalent binding for several other drugs that have been associated with covalent binding-induced toxicity and/or IADRs. NAC and selective inhibitors of CYP2B6 and CYP3A4 significantly reduced TMP covalent binding. These results demonstrate for the first time that TMP bioactivation can lead directly to protein adduct formation, suggesting that TMP has been overlooked as a potential contributor of TMP-SMX IADRs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioactivation of flutamide metabolites by human liver microsomes.

Flutamide, a widely used nonsteroidal antiandrogen drug for the treatment of prostate cancer, has been associated with rare incidences of hepatotoxicity in patients. It is believed that bioactivation of flutamide and subsequent covalent binding to cellular proteins is responsible for its toxicity. A novel N-S glutathione adduct has been identified in a previous bioactivation study of flutamide ...

متن کامل

Characterisation of human cytochrome P450s involved in the bioactivation of clozapine

Clozapine is known to cause hepatotoxicity in a small percentage of patients. Oxidative bioactivation to reactive intermediates by hepatic cytochrome P450s has be proposed as possible mechanism. However, in contrast to their role in formation of Ndesmethylclozapine and clozapine N-oxide, the involvement of individual P450s in the bioactivation to reactive intermediates is much less well charact...

متن کامل

Characterization of human cytochrome P450s involved in the bioactivation of clozapine.

Clozapine is known to cause hepatotoxicity in a small percentage of patients. Oxidative bioactivation to reactive intermediates by hepatic cytochrome P450s (P450s) has be proposed as a possible mechanism. However, in contrast to their role in formation of N-desmethylclozapine and clozapine N-oxide, the involvement of individual P450s in the bioactivation to reactive intermediates is much less w...

متن کامل

Bioactivation of the nontricyclic antidepressant nefazodone to a reactive quinone-imine species in human liver microsomes and recombinant cytochrome P450 3A4.

The therapeutic benefits of the antidepressant nefazodone have been hampered by several cases of acute hepatotoxicity/liver failure. Although the mechanism of hepatotoxicity remains unknown, it is possible that reactive metabolites of nefazodone play a causative role. Studies were initiated to determine whether nefazodone undergoes bioactivation in human liver microsomes to electrophilic interm...

متن کامل

Identification of multiple glutathione conjugates of 8-amino- 2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline maleate (nomifensine) in liver microsomes and hepatocyte preparations: evidence of the bioactivation of nomifensine.

8-Amino-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline maleate (nomifensine), an antidepressant drug, was withdrawn from the market because of increased incidence of hemolytic anemia, as well as kidney and liver toxicity. Although the nature of the potentially reactive metabolites formed after nomifensine metabolism remains unknown and no glutathione (GSH) adducts of these nomifensine reactiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 44 10  شماره 

صفحات  -

تاریخ انتشار 2016